
This document introduces concepts, principles, terminology, and architecture of near-zero
downtime database migration for cloud architects who are migrating databases to Google
Cloud from on-premises or other cloud environments.

This document is part 1 of two parts. Part 2
 (/solutions/database-migration-concepts-principles-part-2) discusses setting up and executing the
migration process, including failure scenarios.

Database migration is the process of migrating data from one or more source databases to
one or more target databases by using a database migration service. When a migration is
finished, the dataset in the source databases resides fully, though possibly restructured, in the
target databases. Clients that accessed the source databases are then switched over to the
target databases, and the source databases are turned down.

The following diagram illustrates this database migration process.

This document describes database migration from an architectural standpoint:

• The services and technologies involved in database migration.

• The differences between homogeneous and heterogeneous database migration.

• The tradeoffs and selection of a migration downtime tolerance.

• A setup architecture that supports a fallback if unforeseen errors occur during a
migration.

Database migration: Concepts and principles
(Part 1)

Database migration: Concepts and principles (Part 1) | Solutions Page 1 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

This document does not describe how you set up a particular database migration technology.
Rather, it introduces database migration in fundamental, conceptual, and principle terms.

The following diagram shows a generic database migration architecture.

A database migration service runs within Google Cloud and accesses both source and target
databases. Two variants are represented: (a) shows the migration from a source database in
an on-premises data center or a remote cloud to a managed database like Cloud Spanner; (b)
shows a migration to a database on Compute Engine.

Even though the target databases are different in type (managed and unmanaged) and setup,
the database migration architecture and configuration is the same for both cases.

Terminology

The most important data migration terms for these documents are defined as follows:

source database: A database that contains data to be migrated to one or more target
databases.

target database: A database that receives data migrated from one or more source databases.

database migration: A migration of data from source databases to target databases with the
goal of turning down the source database systems after the migration completes. The entire
dataset, or a subset, is migrated.

homogeneous migration: A migration from source databases to target databases where the
source and target databases are of the same database management system from the same
provider.

Database migration: Concepts and principles (Part 1) | Solutions Page 2 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

heterogeneous migration: A migration from source databases to target databases where the
source and target databases are of different database management systems from different
providers.

database migration system: A software system or service that connects to source databases
and target databases and performs data migrations from source to target databases.

data migration process: A configured or implemented process executed by the data migration
system to transfer data from source to target databases, possibly transforming the data during
the transfer.

database replication: A continuous transfer of data from source databases to target
databases without the goal of turning down the source databases. Database replication
(sometimes called database streaming) is an ongoing process.

Classification of database migrations

There are different types of database migrations that belong to different classes. This section
describes the criteria that defines those classes.

Replication versus migration

In a database migration, you move data from source databases to target databases. After the
data is completely migrated, you delete source databases and redirect client access to the
target databases. Sometimes you keep the source databases as a fallback measure if you
encounter unforeseen issues with the target databases. However, after the target databases
are reliably operating, you eventually delete the source databases.

With database replication, in contrast, you continuously transfer data from the source
databases to the target databases without deleting the source databases. Sometimes
database replication is referred to as database streaming. While there is a defined starting
time, there is typically no defined completion time. The replication might be stopped or
become a migration.

This document discusses only database migration.

Database migration: Concepts and principles (Part 1) | Solutions Page 3 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Partial versus complete migration

Database migration is understood to be a complete and consistent transfer of data. You define
the initial dataset to be transferred as either a complete database or a partial database (a
subset of the data in a database) plus every change committed on the source database
system thereafter.

Heterogeneous migration versus homogeneous migration

A homogeneous database migration is a migration between the source and target databases of
the same database technology, for example, migrating from a MySQL database to a MySQL
database, or from an Oracle® database to an Oracle database. Homogeneous migrations also
include migrations between a self-hosted database system such as PostgreSQL to a managed
version of it such as Cloud SQL (a PostgreSQL variant).

In a homogenous database migration, the schemas for the source and target databases are
likely identical. If the schemas are different, the data from the source databases must be
transformed during migration.

Heterogeneous database migration is a migration between source and target databases of
different database technologies, for example, from an Oracle database to Spanner.
Heterogeneous database migration can be between the same data models (for example, from
relational to relational), or between different data models (for example, from relational to key-
value).

Migrating between different database technologies doesn't necessarily involve different data
models. For example, Oracle, MySQL, PostgreSQL, and Spanner all support the relational data
model. However, multi-model databases like Oracle, MySQL, or PostgreSQL support different
data models. Data stored as JSON documents in a multi-model database can be migrated to
MongoDB with little or no transformation necessary, as the data model is the same in the
source and the target database.

Although the distinction between homogeneous and heterogeneous migration is based on
database technologies, an alternative categorization is based on database models involved.
For example, a migration from an Oracle database to Spanner is homogeneous when both use
the relational data model; a migration is heterogeneous if, for example, data stored as JSON
objects in Oracle is migrated to a relational model in Spanner.

Database migration: Concepts and principles (Part 1) | Solutions Page 4 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Categorizing migrations by data model more accurately expresses the complexity and effort
required to migrate the data than basing the categorization on the database system involved.
However, because the commonly used categorization in the industry is based on the database
systems involved, the remaining sections are based on that distinction.

Migration downtime: zero versus minimal versus significant

After you successfully migrate a dataset from the source to the target database, you then
switch client access over to the target database and delete the source database.

Switching clients from the source databases to the target databases involves several
processes:

• To continue processing, clients must close existing connections to the source databases
and create new connections to the target databases. Ideally, closing connections is
graceful, meaning that you don't unnecessarily roll back ongoing transactions.

• After closing connections on the source databases, you must migrate remaining changes
from the source databases to the target databases (called draining) to ensure that all
changes are captured.

• You might need to test target databases to ensure that these databases are functional
and that clients are functional and operate within their defined service level objectives
(SLOs).

In a migration, achieving truly zero downtime for clients is impossible; there are times when
clients cannot process requests. However, you can minimize the duration that clients are
unable to process requests in several ways (near-zero downtime):

• You can start your test clients in read-only mode against the target databases long
before you switch the clients over. With this approach, testing is concurrent with the
migration.

• You can configure the amount of data being migrated (that is, in flight between the
source and target databases) to be as small as possible when the switch over period
approaches. This step reduces the time for draining because there are fewer differences
between the source databases and the target databases.

• If new clients operating on the target databases can be started concurrently with existing
clients operating on the source databases, you can shorten the switch over time because
the new clients are ready to execute as soon as all data is drained.

Database migration: Concepts and principles (Part 1) | Solutions Page 5 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

While it's unrealistic to achieve zero downtime during a switch over, you can minimize the
downtime by starting activities concurrently with the ongoing data migration when possible.

In some database migration scenarios, significant downtime is acceptable. Typically, this
allowance is a result of business requirements. In such cases, you can simplify your approach.
For example, with a homogeneous database migration, you might not require data
modification; export/import or backup/restore are perfect approaches. With heterogeneous
migrations, the database migration system does not have to deal with updates of source
database systems during the migration.

However, you need to establish that the acceptable downtime is long enough for the database
migration and follow-up testing to occur. If this downtime cannot be clearly established or is
unacceptably long, you need to plan a migration that involves minimal downtime.

Database migration cardinality

In many situations database migration takes place between a single source database and a
single target database. In such situations, the cardinality is 1:1 (direct mapping). That is, a
source database is migrated without changes to a target database.

A direct mapping, however, is not the only possibility. Other cardinalities include the following:

• Consolidation (n:1). In a consolidation, you migrate data from several source databases
to a smaller number of target databases (or even one target). You might use this
approach to simplify database management or employ a target database that can scale.

• Distribution (1:n). In a distribution, you migrate data from one source database to several
target databases. For example, you might use this approach when you need to migrate a
large centralized database containing regional data to several regional target databases.

• Re-distribution (n:m). In a re-distribution, you migrate data from several source
databases to several target databases. You might use this approach when you have
sharded source databases with shards of very different sizes. The re-distribution evenly
distributes the sharded data over several target databases that represent the shards.

Database migration provides an opportunity to redesign and implement your database
architecture in addition to merely migrating data.

Database migration: Concepts and principles (Part 1) | Solutions Page 6 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Migration consistency

The expectation is that a database migration is consistent. In the context of migration,
consistent means the following:

• Complete. All data that is specified to be migrated is actually migrated. The specified
data could be all data in a source database or a subset of the data.

• Duplicate free. Each piece of data is migrated once, and only once. No duplicate data is
introduced into the target database.

• Ordered. The data changes in the source database are applied to the target database in
the same order as the changes occurred in the source database. This aspect is essential
to ensure data consistency.

An alternative way to describe migration consistency is that after a migration completes, the
data state between the source and the target databases is equivalent. For example, in a
homogenous migration that involves the direct mapping of a relational database, the same
tables and rows must exist in the source and the target databases.

This alternative way of describing migration consistency is important because not all data
migrations are based on sequentially applying transactions in the source database to the
target database. For example, you might back up the source database and use the backup to
restore the source database content into the target database (when significant downtime is
possible).

Active-passive versus active-active migration

An important distinction is whether the source and target databases are both open to
modifying query processing. In an active-passive database migration, the source databases
can be modified during the migration, while the target databases allow only read-only access.

An active-active migration supports clients writing into both the source as well as the target
databases during the migration. In this type of migration, conflicts can occur. For instance, if
the same data item in the source and target database is modified so as to conflict with each
other semantically, you might need to run conflict resolution rules to resolve the conflict.

In an active-active migration, you must be able to resolve all data conflicts by using conflict
resolution rules. If you cannot, you might experience data inconsistency.

Database migration: Concepts and principles (Part 1) | Solutions Page 7 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Database migration architecture

A database migration architecture describes the various components required for executing a
database migration. This section introduces a generic deployment architecture and treats the
database migration system as a separate component. It also discusses the features of a
database management system that support data migration as well as non-functional
properties that are important for many use cases.

Deployment architecture

A database migration can occur between source and target databases located in any
environment, like on-premises or different clouds. Each source and target database can be in a
different environment; it is not necessary that all are collocated in the same environment.

The following diagram shows an example of a deployment architecture involving several
environments.

DB1 and DB2 are two source databases, and DB3 and Spanner are the target databases. Two
clouds and two on-premises data centers are involved in this database migration. The arrows
represent the invocation relationships: the database migration service invokes interfaces of all
source and target databases.

A special case not discussed here is the migration of data from a database into the same
database. This special case uses the database migration system for data transformation only,
not for migrating data between different systems across different environments.

Database migration: Concepts and principles (Part 1) | Solutions Page 8 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Fundamentally, there are three approaches to database migration, which this section
discusses:

• Using a database migration system (#migration-system)

• Using database management system replication functionality
 (#management-system-replication)

• Using custom database migration functionality (#custom-migration-functionality)

Database migration system

The database migration system is at the core of database migration. The system executes the
actual data extraction from the source databases, transports the data to the target databases,
and optionally modifies the data during transit. This section discusses the basic database
migration system functionality in general. Examples of database migration systems include
Striim (https://www.striim.com), tcVision (https://treehouse.com/) and Cloud Data Fusion
 (/data-fusion).

Data migration process

The core technical building block of a database migration system is the data migration
process. The data migration process is specified by a developer and defines the source
databases from which data is extracted, the target databases into which data is migrated, and
any data modification logic applied to the data during the migration.

You can specify one or more data migration processes and execute them sequentially or
concurrently depending on the needs of the migration. For example, if you migrate independent
databases, the corresponding data migration processes can run in parallel.

Data extraction and insertion

You can detect changes (insertions, updates, deletions) in a database system in two ways:
database-supported change data capture (CDC) based on a transaction log, and differential
querying of data itself using the query interface of a database management system.

Database migration: Concepts and principles (Part 1) | Solutions Page 9 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

CDC based on a transaction log

Database-supported CDC is based on database management features that are separate from
the query interface. One approach is based on transaction logs (for example the binary log in
MySQL (https://dev.mysql.com/doc/refman/8.0/en/binary-log.html)). A transaction log contains the
changes made to data in the correct order. The transaction log is continuously read, and so
every change can be observed. For database migration, this logging is extremely useful, as
CDC ensures that each change is visible and is subsequently migrated to the target database
without loss and in the correct order.

CDC is the preferred approach for capturing changes in a database management system. CDC
is built into the database itself and has the least load impact on the system.

Differential querying

If no database management system feature exists that supports observing all changes in the
correct order, you can use differential querying as an alternative. In this approach, each data
item in a database gets an additional attribute that contains a timestamp or a sequence
number. Every time the data item is changed, the change timestamp is added or the sequence
number is increased. A polling algorithm reads all data items since the last time it executed or
since the last sequence number it used. Once the polling algorithm determines the changes, it
records the current time or sequence number into its internal state and then passes on the
changes to the target database.

While this approach works without problems for inserts and updates, you need to carefully
design deletes because a delete removes a data item from the database. After the data is
deleted, it is impossible for the poller to detect that a deletion occurred. You implement a
deletion by using an additional status field (a logical delete flag) that indicates the data is
deleted. Alternatively, deleted data items can be collected into one or more tables, and the
poller accesses those tables to determine if deletion occurred.

For variants on differential querying, see Change data capture
 (https://wikipedia.org/wiki/Change_data_capture).

Differential querying is the least preferred approach because it involves schema and
functionality changes. Querying the database also adds a query load that does not relate to
executing client logic.

Database migration: Concepts and principles (Part 1) | Solutions Page 10 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Adapter and agent

The database migration system requires access to the source and to the database systems.
Adapters are the abstraction that encapsulates the access functionality. In the simplest form,
an adapter can be a JDBC driver for inserting data into a target database that supports JDBC.
In a more complex case, an adapter is running in the environment of the target (sometimes
called agent), accessing a built-in database interface like log files. In an even more complex
case an adapter or agent interfaces with yet another software system, which in turn accesses
the database. For example, an agent accesses Oracle GoldenGate, and that in turn accesses
an Oracle database.

The adapter or agent that accesses a source database implements the CDC interface or the
differential querying interface, depending on the design of the database system. In both cases,
the adapter or agent provides changes to the database migration system, and the database
migration system is unaware if the changes were captured by CDC or differential querying.

Data modification

In some use cases, data is migrated from source databases to target databases unmodified.
These straight-through migrations are typically homogeneous.

Many use cases, however, require data to be modified during the migration process. Typically,
modification is required when there are differences in schema, differences in data values, or
opportunities to clean up data while it is in transition.

The following sections discuss several types of modifications that can be required in a data
migration—data transformation, data enrichment or correlation, and data reduction or filtering.

Data transformation

Data transformation transforms some or all data values from the source database. Some
examples include the following:

• Data type transformation. Sometimes data types between the source and target
databases are not equivalent. In these cases, data type transformation casts the source
value into the target value based on type transformation rules. For example, a timestamp
type from the source might be transformed into a string in the target.

• Data structure transformation. Data structure transformation modifies the structure in
the same database model or between different database models. For example, in a

Database migration: Concepts and principles (Part 1) | Solutions Page 11 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

relational system, one source table might be split into two target tables, or several source
tables might be denormalized into one target table by using a join. A 1:n relationship in
the source database might be transformed into a parent/child relationship in Spanner.
Documents from a source document database system might be decomposed into a set
of relational rows in a target system.

• Data value transformation. Data value transformation is separate from data type
transformation. Data value transformation changes the value without changing the data
type. For example, a local time zone is converted to Coordinated Universal Time (UTC).
Or a short zip code (five digits) represented as a string is converted to a long zip code
(five digits followed by a dash followed by 4 digits, also known as ZIP+4).

Data enrichment and correlation

Data transformation is applied on the existing data without reference to additional, related
reference data. With data enrichment, additional data is queried to enrich source data before
it's stored in the target database.

• Data correlation. It is possible to correlate source data. For example, you can combine
data from two tables in two source databases. In one target database, for instance, you
might relate a customer to all open, fulfilled, and canceled orders whereby the customer
data and the order data originate from two different source databases.

• Data enrichment. Data enrichment adds reference data. For example, you might enrich
records that only contain a zip code by adding the city name corresponding to the zip
code. A reference table containing zip codes and the corresponding city names is a static
dataset accessed for this use case. Reference data can be dynamic as well. For example,
you might use a list of all known customers as reference data.

Data reduction and filtering

Another type of data transformation is reducing or filtering the source data before migrating it
to a target database.

• Data reduction. Data reduction removes attributes from a data item. For example, if a zip
code is present in a data item, the corresponding city name might not be required and is
dropped, because it can be recalculated or because it is not needed anymore. Sometimes
this information is kept for historical reasons to record the name of the city as entered by
the user, even if the city name changes in time.

Database migration: Concepts and principles (Part 1) | Solutions Page 12 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

• Data filtering. Data filtering removes a data item altogether. For example, all canceled
orders might be removed and not transferred to the target database.

Data combination or recombination

If data is migrated from different source databases to different target databases, it can be
necessary to combine data differently between source and target databases.

Suppose that customers and orders are stored in two different source databases. One source
database contains all orders, and a second source database contains all customers. After
migration, customers and their orders are stored in a 1:n relationship within a single target
database schema—not in a single target database, however, but several target databases
where each contains a partition of the data. Each target database represents a region and
contains all customers and their orders located in that region.

Target database addressing

Unless there is only one target database, each data item that is migrated needs to be sent to
the correct target database. A couple of approaches to addressing the target database include
the following:

• Schema-based addressing. Schema-based addressing determines the target database
based on the schema. For example, all data items of a customer collection or all rows of
a customer table are migrated to the same target database storing customer information,
even though this information was distributed in several source databases.

• Content-based routing. Content-based routing (using a content-based router
 (https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html),

for example) determines the target database based on data values. For example, all
customers located in the Latin America region are migrated to a specific target database
that represents that region.

You can use both types of addressing at the same time in a database migration. Regardless of
the addressing type used, the target database must have the correct schema in place so that
data items are stored.

Database migration: Concepts and principles (Part 1) | Solutions Page 13 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Persistence of in-transit data

Database migration systems, or the environments on which they run, can fail during a
migration, and in-transit data can be lost. When failures occur, you need to restart the database
migration system and ensure that the data stored in the source database is consistently and
completely migrated to the target databases.

As part of the recovery, the database migration system needs to identify the last successfully
migrated data item to determine where to begin extracting from the source databases. To
resume at the point of failure, the system needs to keep an internal state on the migration
progress.

You can maintain state in several ways:

• You can store all extracted data items within the database migration system before any
database modification, and then remove the data item once its modified version is
successfully stored in the target database. This approach ensures that the database
migration system can exactly determine what is extracted and stored.

• You can maintain a list of references to the data items in transit. One possibility is to
store the primary keys or other unique identifiers of each data item together with a status
attribute. After a failure, this state is the basis for recovering the system consistently.

• You can query the source and target databases after a failure to determine the difference
between the source and target database systems. The next data item to be extracted is
determined based on the difference.

Other approaches to maintaining state can depend on the specific source databases. For
example, a database migration system can keep track of which transaction log entries are
fetched from the source database and which are inserted into the target database. If a failure
occurs, the migration can be restarted from the last successful inserted entry.

Persistence of in-transit data is also important for other reasons than errors or failures. For
example, it might not be possible to query data from the source database to determine its
state. If, for instance, the source database contained a queue, the messages in that queue
might have been removed at some point.

Yet another use case for persistence of in-transit data is large window processing of the data.
During data modification, data items can be transformed independently of each other.
However, sometimes the data modification depends on several data items (for example,
numbering the data items processed per day, starting at zero every day).

Database migration: Concepts and principles (Part 1) | Solutions Page 14 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

A final use case for persistence of in-transit data is to provide repeatability of the data during
data modification when the database system cannot access the source databases again. For
example, you might need to re-execute the data modifications with different modification rules
and then verify and compare the results with the initial data modifications. This approach
might be necessary if you need to track any inconsistencies in the target database because of
an incorrect data modification.

Completeness and consistency verification

You need to verify that your database migration is complete and consistent. This check
ensures that each data item is migrated only once, and that the datasets in the source and
target databases are identical and that the migration is complete.

Depending on the data modification rules, it is possible that a data item is extracted but not
inserted into a target database. For this reason, directly comparing the source and target
databases is not a solid approach for verifying completeness and consistency. However, if the
database migration system tracks the items that are filtered out, you can then compare the
source and target databases along with the filtered items.

Replication functionality of the database management system

A special use case in a homogeneous migration is where the target database is a copy of the
source database. Specifically, the schemas in the source and target databases are the same,
the data values are the same, and each source database is a direct mapping (1:1) to a target
database.

In this case, you can use functionality within the database management system to replicate
one database to another. Replication only creates an exact copy; it does not perform data
modification. Examples are MySQL replication
 (https://dev.mysql.com/doc/refman/8.0/en/replication.html), PostgreSQL replication
 (https://www.postgresql.org/docs/current/runtime-config-replication.html) (see also pdlogical
 (https://www.2ndquadrant.com/en/resources/pglogical/)), or Microsoft SQL Server replication
 (https://docs.microsoft.com/en-us/sql/relational-databases/replication/types-of-replication?view=sql-
server-2017)

.

However, if data modification is required, or you have any cardinality other than a direct
mapping, a database migration system's functionality is needed to address such a use case.

Database migration: Concepts and principles (Part 1) | Solutions Page 15 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Custom database migration functionality

Some reasons for building database migration functionality instead of using a database
migration system or database management system functionality include the following:

• You need full control over every detail.

• You want to reuse functionality.

• You want to reduce costs or simplify your technological footprint.

Building blocks for building migration functionality include the following:

• Export/import. If downtime is not a factor, you can use database export and database
import to migrate data in homogenous database migrations. Export/import, however,
requires that you quiesce the source database to prevent updates before you export the
data. Otherwise, changes might not be captured in the export, and the target database
will not be an exact copy of the source database.

• Backup/restore. Like in the case of export/import, backup/restore incurs downtime
because you need to quiesce the source database so that the backup contains all data
and the latest changes. The downtime continues until the restore is completed
successfully on the target database.

• Differential querying. If changing the database schema is an option, you can extend the
schema so that database changes can be queried at the query interface. An additional
timestamp attribute is added, indicating the time of the last change. An additional delete
flag can be added, indicating if the data item is deleted or not (logical delete). With these
two changes, a poller executing in a regular interval can query all changes since its last
execution. The changes are applied to the target database. Additional approaches are
discussed in Change data capture (https://wikipedia.org/wiki/Change_data_capture).

These are only a few of the possible options to build a custom database migration. Although a
custom solution provides the most flexibility and control over implementation, it also requires
constant maintenance to address bugs, scalability limitations, and other issues that might
arise during a database migration.

Database migration: Concepts and principles (Part 1) | Solutions Page 16 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

Additional considerations of database migration

The following sections briefly discuss non-functional aspects that are important in the context
of database migration. These aspects include error handling, scalability, high availability, and
disaster recovery.

Error handling

Failures during database migration must not cause data loss or the processing of database
changes out of order. Data integrity must be preserved regardless of what caused the failure
(such as a bug in the system, a network interruption, a VM crash, or a zone failure).

A data loss occurs when a migration system retrieves the data from the source databases and
does not store it in the target databases because of some error. When data is lost, the target
databases do not match the source databases and are thus inconsistent and incomplete. The
completeness and consistency verification functionality flags this state (Completeness and
consistency verification (#completeness-consistency-verification)).

Scalability

In a database migration, time-to-migrate is an important metric. In a zero downtime migration
(in the sense of minimal downtime), the migration of the data occurs while the source
databases continue to change. To migrate in a reasonable timeframe, the rate of data transfer
must be significantly faster than the rate of updates of the source database systems,
especially when the source database system is large. The higher the transfer rate, the faster
the database migration can be completed.

When the source database systems are quiesced and are not being modified, the migration
might be faster because there are no changes to incorporate. In a homogeneous database, the
time-to-migrate might be quite fast because you can use backup/restore or export/import
functionality, and the transfer of files scales.

High availability and disaster recovery

In general, source and target databases are configured for high availability. A master database
has a corresponding read replica that is promoted to be the master database when a failure
occurs.

Database migration: Concepts and principles (Part 1) | Solutions Page 17 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

When a zone fails, the source or target databases fail over to a different zone to be
continuously available. If a zone failure occurs during a database migration, the migration
system itself is impacted because several of the source or target databases it accesses
become inaccessible. The migration system must reconnect to the newly promoted master
databases that are running after a failure. Once the database migration system is reconnected,
it must recover the migration itself to ensure the completeness and consistency of the data in
the target databases. The migration system must determine the last consistent transfer to
establish where to resume.

If the database migration system itself fails (for example, the zone it runs in becomes
inaccessible), then it must be recovered. One recovery approach is a cold restart. In this
approach, the database migration system is installed in an operational zone and restarted. The
biggest issue to address is that the migration system must be able to determine the last
consistent data transfer before the failure and continue from that point to ensure data
completeness and consistency in the target databases.

If the database migration system is enabled for high availability, it can fail over and continue
processing afterwards. If limited downtime of the database migration system is important, you
need to select a database and implement high availability.

In terms of recovering the database migration, disaster recovery is very similar to high
availability. Instead of reconnecting to newly promoted master databases in a different zone,
the database migration system must reconnect to databases in a different region (a failover
region). The same holds true for the database migration system itself. If the region where the
database migration system runs becomes inaccessible, the database migration system must
fail over to a different region and continue from the last consistent data transfer.

Pitfalls

Several pitfalls can cause inconsistent data in the target databases. Some common ones to
avoid are the following:

• Order violation. If scalability of the migration system is achieved by scaling out, then
several data transfer processes are running concurrently (in parallel). Changes in a
source database system are ordered according to committed transactions. If changes
are picked up from the transaction log, the order must be maintained throughout the
migration. Parallel data transfer can change the order because of varying speed between
the underlying processes. It is necessary to ensure that the data is inserted into the
target databases in the same order as it is received from the source databases.

Database migration: Concepts and principles (Part 1) | Solutions Page 18 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

• Consistency violation. With differential queries, the source databases have additional
data attributes that contain, for example, commit timestamps. The target databases will
not have commit timestamps because the commit timestamps are only put in place to
establish change management in the source databases. It is important to ensure that
inserts into the target databases must be timestamp consistent, which means all
changes with the same timestamp must be in the same insert or update or upsert
transaction. Otherwise, the target database might have an inconsistent state
(temporarily) if some changes are inserted and others with the same timestamp are not.
This temporary inconsistent state does not matter if the target databases are not
accessed for processing. However, if they are used for testing, consistency is paramount.

• Missing or duplicate data. When a failover occurs, a careful recovery is required if some
data is not replicated between the master and the failover replica. For example, a source
database fails over and not all data is replicated to the failover replica. At the same time,
the data is already migrated to the target database before the failure. After failover, the
newly promoted master database is behind in terms of data changes to the target
database (called flashback). A migration system needs to recognize this situation and
recover from it in such a way that the target database and the source database get back
into a consistent state.

• Local transactions. To have the source and target database receive the same changes, a
common approach is to have clients write to both the source and target databases
instead of using a data migration system. This approach has several pitfalls. One pitfall is
that two database writes are two separate transactions; you might encounter a failure
after the first finishes and before the second finishes. This scenario causes inconsistent
data from which you must recover. Also, there are several clients in general, and they are
not coordinated. The clients do not know the source database transaction commit order
and therefore cannot write to the target databases implementing that transaction order.
The clients might change the order, which can lead to data inconsistency. Unless all
access goes through coordinated clients, and all clients ensure the target transaction
order, this approach can lead to an inconsistent state with the target database.

In general, there are other pitfalls to watch out for. The best way to find problems that might
lead to data inconsistency is to do a complete failure analysis that iterates through all possible
failure scenarios. If concurrency is implemented in the database migration system, all possible
data migration process execution orders must be examined to ensure that data consistency is
preserved. If high availability or disaster recovery (or both) is implemented, all possible failure
combinations must be examined.

Database migration: Concepts and principles (Part 1) | Solutions Page 19 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

What's next

• Read Database migrations: Concepts and principles (Part 2)
 (/solutions/database-migration-concepts-principles-part-2).

• Read about database migration in the following documents:

• Migrating from PostgreSQL to Spanner (/spanner/docs/migrating-postgres-spanner)

• Migrating from an Oracle® OLTP system to Spanner
 (/solutions/migrating-oracle-to-cloud-spanner)

• Migrating a MySQL cluster to Compute Engine using HAProxy
 (/solutions/migrating-mysql-cluster-compute-engine-haproxy)

• See Database migration (/solutions/database-migration) for more database migration
guides.

• Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License

 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License

 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies

 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2020-05-11.

Database migration: Concepts and principles (Part 1) | Solutions Page 20 of 20

https://cloud.google.com/solutions/database-migration-concepts-principles-part-1 6/22/2020

